๐Ÿ”ฅ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒโ€™๐˜€ ๐—ก๐—ฒ๐˜€๐˜๐—ฒ๐—ฑ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด: ๐—›๐—ผ๐˜„ ๐—ฆ๐—ฒ๐—น๐—ณ-๐— ๐—ผ๐—ฑ๐—ถ๐—ณ๐˜†๐—ถ๐—ป๐—ด ๐—ง๐—ถ๐˜๐—ฎ๐—ป๐˜€ ๐— ๐—ฒ๐—ฟ๐—ด๐—ฒ ๐—ข๐—ฝ๐˜๐—ถ๐—บ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฎ๐—ป๐—ฑ ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜†

AI has a memory problem. Your brain can learn something new today without wiping yesterday. AI? It forgets instantly. ๐—–๐—ฎ๐˜๐—ฎ๐˜€๐˜๐—ฟ๐—ผ๐—ฝ๐—ต๐—ถ๐—ฐ ๐—ณ๐—ผ๐—ฟ๐—ด๐—ฒ๐˜๐˜๐—ถ๐—ป๐—ด is its default setting.

For years our fix was โ€œmake it bigger.โ€ More layers. More parameters. More GPUs.

Googleโ€™s latest research says: ๐—ช๐—ฒโ€™๐˜ƒ๐—ฒ ๐—ฏ๐—ฒ๐—ฒ๐—ป ๐˜€๐—ฐ๐—ฎ๐—น๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐˜„๐—ฟ๐—ผ๐—ป๐—ด ๐—ฑ๐—ถ๐—บ๐—ฒ๐—ป๐˜€๐—ถ๐—ผ๐—ป.

๐Ÿง  ๐—ง๐—ต๐—ฒ ๐—•๐—ฟ๐—ฎ๐—ถ๐—ป ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐˜€ ๐—Ÿ๐—ถ๐—ธ๐—ฒ ๐—ฎ๐—ป ๐—ข๐—ฟ๐—ฐ๐—ต๐—ฒ๐˜€๐˜๐—ฟ๐—ฎ โ€” Not a Metronome

Your brain runs multiple learning tempos at once:

  • ๐—š๐—ฎ๐—บ๐—บ๐—ฎ: fast, reactive
  • ๐—•๐—ฒ๐˜๐—ฎ: active thinking
  • ๐—ง๐—ต๐—ฒ๐˜๐—ฎ/๐——๐—ฒ๐—น๐˜๐—ฎ: slow, deep storage

AI today forces every โ€œinstrumentโ€ to learn at the same speedโ€ฆ then shuts learning off entirely after training.

This is the ๐—ถ๐—น๐—น๐˜‚๐˜€๐—ถ๐—ผ๐—ป ๐—ผ๐—ณ ๐—ฑ๐—ฒ๐—ฝ๐˜๐—ต.

๐ŸŽผ ๐—ก๐—ฒ๐˜€๐˜๐—ฒ๐—ฑ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด: ๐—”๐—œ ๐—ช๐—ถ๐˜๐—ต ๐— ๐˜‚๐—น๐˜๐—ถ๐—ฝ๐—น๐—ฒ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ง๐—ฒ๐—บ๐—ฝ๐—ผ๐˜€ Googleโ€™s Nested Learning reframes a model as layers of learners, each updating at its own frequency:

  • ๐—™๐—ฎ๐˜€๐˜ โ†’ immediate context
  • ๐— ๐—ฒ๐—ฑ๐—ถ๐˜‚๐—บ โ†’ structural patterns
  • ๐—ฆ๐—น๐—ผ๐˜„ โ†’ stable long-term memory

A multi-tempo learning system โ€” just like your brain.

๐Ÿ’ฅ ๐—ง๐—ต๐—ฒ ๐—•๐—ฟ๐—ฒ๐—ฎ๐—ธ๐˜๐—ต๐—ฟ๐—ผ๐˜‚๐—ด๐—ต ๐—œ๐—ป๐˜€๐—ถ๐—ด๐—ต๐˜: Optimizers = Memory Systems

Google shows:

  • ๐Ÿ”น Backprop is memory of surprise
  • ๐Ÿ”น Momentum is memory of gradient history
  • ๐Ÿ”น Adam is memory of long-term trends
  • ๐Ÿ”น Pre-training is massive long-term consolidation

Once you treat optimizers as memoryโ€ฆ

  • โžก๏ธ the boundary between training and inference disappears.
  • โžก๏ธ models can update ๐™ฌ๐™๐™ž๐™ก๐™š ๐™ฉ๐™๐™š๐™ฎ ๐™ฉ๐™๐™ž๐™ฃ๐™ .

Thatโ€™s the basis of Googleโ€™s new architecture.

๐ŸŽน ๐—›๐—ข๐—ฃ๐—˜ โ€” The Model Designed to Never Forget

HOPE blends two memory systems:

๐ŸŽป๐—ง๐—ถ๐˜๐—ฎ๐—ป๐˜€ (๐—™๐—ฎ๐˜€๐˜ ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜†)

  • ๐Ÿ”น Self-modifying blocks that adapt during inference.
  • ๐Ÿ”น Real-time learning.

๐ŸŽบ๐—–๐—ผ๐—ป๐˜๐—ถ๐—ป๐˜‚๐˜‚๐—บ ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜† ๐—ฆ๐˜†๐˜€๐˜๐—ฒ๐—บ (๐—ฆ๐—น๐—ผ๐˜„ ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜†)

  • ๐Ÿ”น A chain of slow-updating memory modules that donโ€™t get overwritten.
  • ๐Ÿ”น Long-term stability.

Together, HOPE learns in multiple tempos โ€” like cognition, not computation.

๐ŸŽบ The ๐—ฅ๐—ฒ๐˜€๐˜‚๐—น๐˜๐˜€?

Continual Learning:

  • ๐Ÿ”น Retains old tasks while learning new ones.

Zero catastrophic forgetting.

  • ๐Ÿ”น Needle-in-a-Haystack: Scored 100% where Transformers buckled under long contexts.
  • ๐Ÿ”น Language Modeling: Outperformed strong Transformer baselines even on standard LM tasks.

Weโ€™ve spent a decade building bigger models that forget easily. Transformers made AI powerful.

Nested Learning could make it ๐—ฎ๐—น๐—ถ๐˜ƒ๐—ฒ โ€” adaptive, continuous, memorable. And do what your brain does naturally: ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป ๐˜๐—ผ๐—ฑ๐—ฎ๐˜† ๐˜„๐—ถ๐˜๐—ต๐—ผ๐˜‚๐˜ ๐—น๐—ผ๐˜€๐—ถ๐—ป๐—ด ๐˜†๐—ฒ๐˜€๐˜๐—ฒ๐—ฟ๐—ฑ๐—ฎ๐˜†.

This isnโ€™t a drop-in replacement for Transformers โ€” ๐—ถ๐˜โ€™๐˜€ ๐—ฎ ๐—ฑ๐—ถ๐—ฟ๐—ฒ๐—ฐ๐˜๐—ถ๐—ผ๐—ป, ๐—ป๐—ผ๐˜ ๐—ฎ ๐—ฑ๐—ฒ๐˜€๐˜๐—ถ๐—ป๐—ฎ๐˜๐—ถ๐—ผ๐—ป (๐˜†๐—ฒ๐˜).

Reference:

Google Research: Introducing Nested Learning: A new ML paradigm for continual learning